Call to Order

Carol Mullen, Chair, called the October 30, 2003 meeting to order at 10:00 am.

Minutes

The September 25, 2003 minutes were approved as printed.

Guest Speakers

Institute for Instructional Research & Practice/Institute for At-Risk Infants, Youth and their Families

Neal Berger, Director, Institute for Instructional Research and Practice (IIRP) and the Institute for At-Risk Infants, Youth, and Their Families was guest speaker. These institutes operate under a budget of $8 million and employ approximately 70 people. The IIRP was established to develop, revise, administer, and report all the State’s Teacher Certification exams. Since its inception in 1984 there has been about $90 million in grants and other monies by proviso language. During this time, over one hundred graduate students have been employed and some have become full-time employees. In 1989 the Institute for At-Risk Infants, Children & Youth, and their Families was established by the Florida Legislature to conduct research and development directed at improving services to at-risk children and families. The Institutes are self-sufficient and do not relay on the College of Education for funding. The Department of Education furnishes more money to the Institutes than any other place in this state.

The Institutes collaborate with various departments, i.e., Counselor Education (graduate students are used to recruit for teams), Measurement (hire professors who are doing syntactical work). On occasions the Institutes has served as a broker for grants and contracts when there was an interest. Funds have been provided by the Institutes for individual faculty members in the college with projects consistent with our goals and graduate students working on their doctoral dissertation. Dr. Berger’s vision is to
College of Education
RESEARCH COMMITTEE

establish an Exam Training Service on campus where faculty develop exams, create the policies that deal with the exams, train, publish, and do research.

Graduate Student Research
Jeff Kromrey, Measurement; Melinda Hess, President, COE Graduate Research Association for Professional Enhancement (GRAPE); and Terri Wonder, ACHE discussed collaboration with the CAS Symposium, an online conference, and other ideas for the support of Graduate Student development via the leadership of GRAPE in 2004.

- The Research Committee approved, in general, the idea of planning a spring 2004 COE symposium for the presentation of graduate student research.
- If COE money is available to support the symposium, Dr. Neal Berger offered to provide matching funds from IIRP (up to $1000).
- The Research Committee will present the idea for the COE graduate symposium at the next College Council meeting on 14 November. Terri Wonder will attend the Council meeting to discuss this issue.
- Faculty reviewers will be solicited for the student proposals and session discussants and chairs may also be needed.
- If the Council approves the idea, GRAPE will go ahead and plan the symposium, with continued contact via Dr. Mullen.

(Mullen, Research Report circulated to DELPS and presented at College Council, 10/14/03)

Undergraduate Research
Childhood Education’s plans for undergraduate research were discussed and information will be distributed by the department for an upcoming poster session (see attached).

Adjournment

The meeting was adjourned at 12:00 p.m.

Next Meeting

The next Research meeting is scheduled for November 20, 2003 at 10:00 am in EDU 219. Guest speakers for this meeting will be Liz O’Connell, Coordinator: Internal Awards Program, Dr. Steve Permuth, Chair, GPC: Intercampus Operating Procedures and faculty load oversight, and Dr. Kofi Marfo, Director, Center for Research on Children’s Development & Learning.

Minutes Transcribed by

Rebecca Wilkins, Program Assistant
College Council, College of Education
The format for the Undergraduate Research/Technology Symposium will be a structured poster session. A structured poster session combines the graphic display of materials with the opportunity for individualized presentations of the research. Each participant may present his or her research/technology project a total three times. The presentation will be followed by audience questions and opportunities for them to stroll among the projects.

Structured Poster Session.
Individual presenters set up displays representing their papers in a large room with other presenters. Detailed instructions on preparation of posters will be provided to participants upon acceptance of their proposal.

The first 10 minutes of the session is set aside for an introduction and brief oral presentations to the audience gathered as a group. During the remaining time, attendees ask questions and wander at will among poster stations that are presented by other undergraduate students.

Instructions for the Preparation of Posters

General Considerations

Plan to set up your display 30 minutes before the session is to begin. The Chair of session or the information contained in the Meeting Program will indicate the presentation space to which you have been assigned. The presenting author should be available throughout the session and be prepared to have his or her display removed no more than 10 minutes after the end of the session.

Your materials should be mounted on thin poster paper or cardboard. Avoid the use of heavy board, which may be difficult to keep in position on the poster surface. If it seems appropriate, it can be helpful to mount conceptually related portions of your display on backgrounds of the same color, as this will help viewers scan the display efficiently.

The poster should be as self-explanatory as possible so that your main job is to supplement the information it contains. The poster format provides a mechanism for in-depth discussions of your research, but this is possible only if the display includes enough information.
Keep in mind that your text and illustrations will be viewed from distances of more than three feet. All lettering should be at least 3/8” high, 1” for more important information, and preferably in a bold font.

Figures and table should be kept as simple as possible, so that the viewer can readily take away the main message. A brief, large type heading of no more than one or two lines should be provided above each illustration, with more detailed information added in smaller type beneath the illustration.

Arrangement of Materials

The poster surface is made of cardboard and measures approximately 3’ x 4’. It can be set up in either orientation. While some fasteners will be available, we cannot guarantee that there will be enough for all participants. It is up to participants to make sure that they bring their own supplies with them.

Prepare a sign containing the paper title and authors' names and course affiliations. This information should appear at the top of the poster.

A copy of your Abstract of Introduction (300 words or less) should be placed in the upper left portion of the poster, with a Conclusion in the lower right hand corner. Although there is considerable room for flexibility, it is often useful to have panels indicating the Aims of the Research, the Methods and Subjects involved, and the Experimental tasks (if appropriate). Another panel might highlight the important Results, with a few panels being used to present the main points in Tables or Figures.

When working on the arrangement of your display on the poster, be aware that it is preferable to align materials in columns rather than rows.

Adapted from www.aera.net
www.aera.net/meeting/am2004/poster_prep.htm

The Undergraduate Research and Technology Symposium is hosted by USF’s college of Education, and organized by Childhood Education. Members of the Organizing Committee are: Ann Hall, James R. King, Suzanne Quinn, and Jenifer Schneider, all faculty in Childhood Education.
What is "Research"?
Inquiry Investigation Examination Exploration

Research transforms information into knowledge!

As students, you are asking questions, gathering information, and probing ideas daily. As students and teacher candidates, you are already engaging in the process of "Research."

Research involves forming meaningful and relevant sets of questions, determining how to measure or observe phenomena related to the questions, systematically examining the phenomena by gathering specific information, and analyzing that information, and producing a product of knowledge.

One of the purposes of research products is to communicate knowledge to others. The products of your research will challenge thoughts and practices, and provoke consideration of alternative ways of doing things or thinking about things.

Research is Revolutionary!

How do I start?
All research begins with a problem: a general question in need of answering, something you want to know more about, something relevant to you and to others in your field of study and practice.

Next, you find out what others know about this question. You draw on what you have learned already, seek out the research that others have done, and look for the gaps in the current body of knowledge. Find out what you know, but more importantly, find out what you don't know. Look closely at what others have done: read the existing research that is deemed to be of the highest quality (seek out peer reviewed scientific and educational journal articles- ask your professors which ones are the best). Keep an eye out for the theories that contribute to the existing body of knowledge. Theories are the frameworks for the construction of ideas. The purpose of your research will be to either find out more about what you already know, or to find out what you and others don't know.

Next, develop a set of questions that you will be able to answer during the course of an investigation. The key here is that it will be possible to answer these questions, or work toward an answer, given the amount of time and resources you have.

Determine who the participants of your research project will be.

Ethics
Before you work on this project, think through all of the possible ethical considerations related to your proposed project. They might be:
RESEARCH COMMITTEE

RESEARCH MUST NEVER EVER NEVER EVER DO HARM TO PARTICIPANTS-
CERTIANLY NOT PHYSICALLY, BUT ALSO NOT EMOTIONALLY NOR
PSYCHOLOGICALLY.

RESEARCH MUST OFFER A DIRECT BENEFIT TO THE PARTICIPANTS AND TO
OTHERS IN THE FIELD OF STUDY OR PRACTICE- IT IS NOT A COGNITIVE
EXERCISE OR A MEANINGLESS PURSUIT.

PARTICIPANTS MUST ALWAYS BE PROVIDED A WRITTEN AND OFTEN
VERBAL DESCRIPTION OF THE RESEARCH PROJECT, EXPLAINING THE
POTENTIAL COSTS AND BENEFITS OF PARTICIPATION IN THE RESEARCH
AND THEY MUST GIVE AN INFORMED CONSENT FOR PARTICIPATION IN
THE PROJECT. FOR YOUNG PEOPLE WHO ARE CONSIDERED MINORS, THEIR
PARENT OR GUARDIAN MUST ALSO CONSENT.

We can help you get started with methods
If you will be asking questions or observing people, you will need to have your proposed
work approved by the University's review board- but don't worry, you will have support
in filing the appropriate paperwork from Suzanne Quinn squinn@tempest.coedu.usf.edu.
You'll just need to get your ideas together within a few weeks so that we can give ample
time for the process.

Formulate and record a plan on how to systematically answer the specific questions you
have placed before yourselves, and then follow the plan.

Gather and record what you have found.

Spend quality time thinking through your findings, asking yourselves: what are the
answers to my original questions, what does it mean, and why does it matter?

Now you can write your questions with the answers you have found based on your
evidence.

And....You have produced a product of "research"!

Remember, the purpose of "research" is to communicate knowledge to others. In order to
do this you must be able to share your ideas in a meaningful way. The people who are
interested in your project must be able to understand exactly what your questions are,
how you went about answering them, what your answers are, and the possibilities of
interpreting the answers, so that ultimately they can make a decision about putting them
into practice. Don't worry - there is a standard form which helps us communicate
research based ideas.

The standard form of a written research project follows:

Problem/Purpose- a statement of what the research is all about.
Research Questions - the specific questions you asked.

Theory - a brief identification of the theoretical framework or general rationale that contributed to the nature of your questions.

Review of Literature - a summary of the current research that others have done relating to your questions with reference to who those others are.

Method - a summary of how you did what you did, including the sample or population of people or artifacts that are involved in the research.

Findings - report what you found: answer the research questions specifically.

Discussion - an interpretation of your findings: what it all means > Research of the highest quality also integrates the findings with the literature review and theory, showing how it all fits (or doesn't fit) together.

Implications - Address how your research can be applied to practices.

Limitations - report what did you not find - and how your particular work is limited.

Future Directions - conclude with what you or future researchers of this topic should do next?

References - include a reference page of the work that you directly drew upon in your literature review and theory sections.

A note about method and design:
In general, there are 2 types of research method: quantitative and qualitative.

Quantitative methodologies incorporate a traditional scientific approach where phenomena are measured or "quantified". In this method, a set of criteria are developed and put into a form that allows for the criteria to be measured, counted, and often compared. An example is a closed ended questionnaire, for which participants answer yes or no questions, or are asked to answer questions on a scale. Another example are closed ended criteria for observations. This process involves the researchers observing particular behaviors and recording these observations.

From the information gathered from several participants, the researchers can tabulate totals, calculate means, or even plot trends, depending on the nature of the questions. This kind of information is useful for general knowledge about the specific criteria. It is limited by the ability of the concepts that you are measuring to be defined, as well as many other factors that "float around" outside of the measurement criteria. You will find that many factors contribute to any one phenomena. This is where any type of research presents a challenge: you must consider all of the factors. Take note, that
you must consider all of the factors, but this does not necessarily mean that you must measure all of the factors - perhaps the factors are not relevant to your question!

Another word of caution related specifically to quantitative types of research is that you must be very careful when you consider what your findings mean. Elementary to research design is that you cannot determine a cause and effect relationship unless you have set up an "experimental" condition - and of course, even if you have set up an experiment (with a test group and a control group) this does not necessarily mean that you have determined the direction of an effect. As an example, what if your general problem under investigation is the relationship between the amount of time young people spend watching t.v. and their reading ability. The underlying reason behind your work may be that you suspect that young people who watch more t.v. have a lower level of reading ability – a reasonable hypothesis, given that time spent watching t.v. could be spent reading, and that theoretically the more time you spend reading, the better you will be at it.

So, you develop a set of questions that are quantifiable: what is the reading ability of the participants (perhaps measured by an appropriate diagnostic test) and how much time do the participants spend watching t.v.? You administer the tests and ask the question to 200 young people (if you're lucky!) and after looking at the data you find that there is a relationship between amount of time watching t.v. and reading ability. You've found (at no surprise) that the young people who watch more t.v. have less reading ability. You conclude, based on your evidence, that watching more t.v. causes less reading. Not Correct! Why? The key word here is CAUSES. You do know that those who watch more t.v. seemingly have less reading ability (based on their score on a test), but you do not know if watching t.v. is the reason why they have less ability. The direction of the effect might actually be the opposite: that having less reading ability causes one to watch more t.v.!

There are also many other factors that you would have to consider: such as age, sex, educational and economic situation of the participants- these all might also effect both reading ability and time spent watching t.v. This doesn't mean that the research was a bad idea, or that it shouldn't be done, however. It just means that when you report findings or design a research study, you need to report and interpret results carefully and consider many factors. How would we know if watching t.v. caused lower reading ability? You would have to have 2 groups of people and control for the factors of biological age, developmental age, baseline reading ability, sex, educational attainment, and economic situation (to name a few), so that both of the groups were "identical". Next you might have one group watch t.v. and one group not watch t.v., then at the end of a specified period of time, you would measure reading ability. Of course, there might be other factors during your experimental period that might affect reading ability (such as reading instruction) - you would have to consider these factors as well. The key is to consider all of the factors!

Another type of research approach is called qualitative design. This type of methodology encompasses a broad range of ways of looking at problems from single case
Qualitative studies are usually more in-depth and situation-specific than quantitative studies. They generally give detailed information about a smaller group of people (maybe even 1 person) rather than general information about a large group of people. Qualitative research designs also usually work with an "inductive" line of reasoning and inquiry, which means that the researcher works from the specific to the general - rather than "deductively" (as in most quantitative designs) which is from general to specific. This means that the qualitative researcher learns as much as she can about a specific phenomena and then uses this information to reason about general phenomena that might be related. Using this method, you have the opportunity to look into the why and how more than the what.

Looking back at the example of the relationship between t.v. watching and reading ability: the quantitative researcher has discovered the what: a relationship between the two activities. The qualitative researcher wants to know the why and how: why do people choose to read or choose to watch t.v., and how does this contribute (or not) to reading ability. A qualitative researcher might go about answering his questions with a small group of people, asking them to record their reading and t.v. watching habits in a log, and also asking them to reflect on why they made their choices. He might also ask the people to think about their reading ability, and their experiences with reading. The information this researcher will gather will be much richer than just numbers and mathematical relationships. As such, there is a great deal of work to be done in the analysis. The task of the researcher is to synthesize the findings, looking for "themes" related to reading, viewing television, and the relationship between the two, from the perspective of the participants. This is but one example of how a researcher might examine a problem qualitatively.

It is not an issue of whether or not one method is good, bad, better or worse, but whether or not the researcher is using the appropriate method, given the problem at hand, and the available resources. Ideally, the best way to find answers to a problem are to look at it from many angles, consider all of the possible factors, and work collaboratively with others.
On December 2, 2003, Childhood Education will host a research symposium that will feature the research and technology projects of its undergraduate students. You are invited to submit your independent and/or collaborative research projects or technology projects to a review committee for possible inclusion in a presentation in the TECO room of the Anchin Center. Your projects can be the result of your coursework or independent work. Your presentations will be made in the form of a Poster Session. In a poster session each presenter stands beside his/her project and the audience walks around the room to hear the different presenters who are simultaneously telling small groups about their work. If and when your proposal is accepted by the review committee, you will receive further instructions on how to make your presentations. In order to submit your project, please complete and submit the following form:

Name________________________ Major________________________
Course and Instructor__
Address___
Phones___
Email___
Title of Project__

A brief description of your project__
__
__
__
__
__

Type(s) of data analyzed__

Why is this project important to other teachers?______________________
__

Mail (email or hard copy) to Dr. James King, EDU 162 or king@tempest.coedu.usf.edu by Friday, October 10, 2003 at 5:00 pm.